sábado, 1 de fevereiro de 2020


FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
  • ´




Transformações reversíveis[editar | editar código-fonte]

A entropia é um conceito essencial ao estudo das máquinas térmicas.
A ideia de entropia, uma grandeza física que encontra sua definição dentro da área da termodinâmica,[Nota 4]surgiu no seguimento de uma função criada por Clausius[3] a partir de um processo cíclico reversível. Sendo Q o calor trocado entre o sistema e sua vizinhança, e T a temperatura absoluta do sistema, em todo processo reversível a integral de curva de  só depende dos estados inicial e final, sendo independente do caminho seguido. Portanto deve existir uma função de estado do sistema, S = f (P, V, T), chamada de entropia, cuja variação em um processo reversível entre os estados inicial e final é:[Nota 5]
, sendo Q reversível
X


 ,    X  
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



A entropia física, em sua forma clássica é dada por:
, desde que o calor seja trocado de forma reversível
X


 ,    X  
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



ou, quando o processo é isotérmico:
X


 ,    X  
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



onde S é a entropia,  a quantidade de calor trocado e T a temperatura em Kelvin.
O significado desta equação pode ser descrito, em linguagem corrente, da seguinte forma:
Em processos reversíveis como o descrito, quando um sistema termodinâmico passa do estado 1 ao estado 2, a variação em sua entropia é igual à variação da quantidade de calor trocada (de forma reversível) dividido pela temperatura.

Processos de não equilíbrio[editar | editar código-fonte]

Em processos mais complexos, o que inclui os processos irreversíveis e de não equilíbrio como a expansão livre, entropia pode e sempre é produzida dentro do próprio sistema, e a variação total na entropia destes sistemas é igual à soma de dois termos: a entropia produzida e a entropia trocada com a vizinhança. A entropia trocada equivale, em processos quase estáticos, conforme descrito, à integral de dQ/T, sendo sempre nula quando a transformação é adiabática. O uso desta expressão ao casos de processos de não equilíbrio é contudo inadequado, ou, no mínimo, requer muita cautela, visto que a própria definição de temperatura fica comprometida. Já a entropia produzida vale zero apenas quando o processo é reversível, sendo sempre positiva em transformações irreversíveis.
Observa-se que em todas os processos a entropia total do sistema mais vizinhança ou aumenta (processos irreversíveis), ou fica constante (transformações reversíveis). Na prática, apesar de existirem processos que muito se aproximam dos reversíveis, toda transformação leva a um aumento na entropia total do sistema mais vizinhança, e este princípio permite definir a Segunda Lei da Termodinâmica, cuja implicação direta consiste no fato de que um processo tende a dar-se de forma espontânea em único sentido, aquele que leve ao aumento da entropia total (do sistema mais vizinhança). Por esses motivos, a entropia também é chamada de flecha do tempo.
Como não é possível determinar-se o aumento da entropia partindo-se diretamente de considerações sobre os sistemas que estão em processos de não equilíbrio - irreversíveis - justamente por estes estarem fora do equilíbrio, para determinar-se a variação de entropia total sofrida por um sistema ao longo de um processo de não equilíbrio determina-se a diferença entre as entropias inicial e final associadas aos respectivos estados de equilíbrio inicial e final. Tal consideração leva em conta o fato de a entropia ser uma função de estado, e por tal sua variação não depende de como o sistema saiu de um estado e chegou ao outro, e sim apenas dos estados inicial e final envolvidos.
A unidade de entropia no SI é designada por J/K'.

Definição termodinâmica[editar | editar código-fonte]

No início da década de 1850Rudolf Clausius descreveu o conceito de energia desperdiçada em termos de diferenciais.
Em 1876, o físicoquímico e matemático Willard Gibbs chegou à conclusão de que o conceito de energia disponível ΔG em um sistema termodinâmico é matematicamente obtido através da subtração entre a energia perdida TΔS e a variação da energia total do sistema ΔH.
Estes conceitos foram desenvolvidos posteriormente por James Clerk Maxwell 1871 e Max Planck 1903.
Nos dias de hoje a entropia é postulada conforme se segue [Nota 6]:
- "Existe uma função (denominada entropia S) dos parâmetros extensivos de um sistema definida para todos os estados de equilíbrio termodinâmico deste sistema e com a seguinte propriedade: dentre todos os estados de equilíbrio possíveis que satisfazem as restrições físicas impostas ao sistema o estado de equilíbrio assumido pelo sistema será aquele para o qual os valores dos parâmetros extensivos neste estado levem à maximização do valor de sua entropia S. Em um sistema sem restrições internas a entropia é a maior possível."
A exemplo, na parte superior da figura ao lado tem-se um sistema com uma fronteira adiabática e uma restrição interna. O estado de equilíbrio termodinâmico de um sistema, satisfeitas as restrições internas, corresponde ao estado onde a entropia é a máxima possível. Na parte inferior a restrição é removida. O sistema passa por transformações e, após certo tempo atinge um novo estado de equilíbrio termodinâmico. Nestas transformações a entropia do sistema geralmente aumenta, o que ocorre para expansão livre mostrada, ou em casos outrem específicos - quando todos os processos se fazem de forma reversível - não se altera. A entropia de um sistema isolado nunca diminui.
A entropia de um sistema aumenta mediante a remoção de restrições internas.
Assim, o estado de equilíbrio realmente assumido por um sistema termodinâmico é, satisfeitas as restrições físicas impostas, o estado de maior entropia possível, e a remoção de uma restrição leva geralmente a um aumento da entropia do sistema composto, ou, em caso específicos (transformações reversíveis), à manutenção de seu valor, mas nunca a uma diminuição da mesma.
Há três outros postulados que, em termodinâmica, mostram-se diretamente associados à definição de entropia, sendo eles:
- "A entropia de um sistema composto é aditiva sobre os subsistemas que o constituem. A entropia é contínua e diferenciável e é uma função monótona crescente da energia interna U."
- "A entropia de um sistema é nula para um estado onde a temperatura absoluta T também o seja."
- "Existe um estado particular - chamado estado de equilíbrio - de um sistema que, macroscopicamente, é completamente caracterizado pela energia interna U, pelo volume V, e pela quantidade de matéria N1, N2,N3 de seus constituintes químicos.".[Nota 7]
A entropia S quando expressa em função do volume V do sistema, da quantidade de partículas N do sistema e da energia interna U do sistema, S(U,N,V), é uma Equação Termodinâmica Fundamental para um sistema termodinâmico simples, e pode, mediante a Transformada de Legendre, ser transformada em outras equações fundamentais como a equação da Entalpia H(S,P,N), Energia de Helmholtz F(T,V,N), Energia livre de Gibbs G(T,P,N) ou o Grande Potencial Canônico U(T,P,m). Em sistemas termodinâmicos mais complexos, a exemplo em sistemas magnéticos, outras variáveis podem vir a figurar na equação entrópica fundamental e nas outras equações fundamentais, entretanto os conceitos de equação fundamental e transformada de Legendre permanecem os mesmos.
As equações fundamentais diferem das equações de estado basicamente no fato de que a partir de uma equação fundamental pode-se obter, com o uso do formalismo termodinâmico, qualquer informação a respeito do sistema termodinâmico por ela descrito, inclusive as equações de estado para este sistema, ao passo que o mesmo não pode ser feito a partir de uma equação de estado, que não retém em si todas as informações necessárias a respeito do sistema. É necessário um conjunto de equações de estado para a descrição completa de um sistema termodinâmico (do qual poderia obter-se, então, as equações fundamentais).

Primeira Lei da Termodinâmica[editar | editar código-fonte]

Ver artigo principal: Primeira Lei da Termodinâmica
A primeira lei da termodinâmica é a lei de conservação de energia aplicada aos processos térmicos. Nela observamos a equivalência entre trabalho e calor. Este princípio pode ser enunciado a partir do conceito de energia interna. Esta pode ser entendida como a energia associada aos átomos e moléculas em seus movimentos e interações internas ao sistema. Num sistema isolado a energia total permanece constante.[Nota 8]

Segunda Lei da Termodinâmica[editar | editar código-fonte]

Ver artigo principal: Segunda Lei da Termodinâmica
A Segunda Lei da Termodinâmica, uma importante lei física, determina que a entropia total de um sistema termodinâmico isolado tende a aumentar com o tempo, aproximando-se de um valor máximo à medida que restrições internas ao sistema são removidas. O estado de equilíbrio termodinâmico de um sistema isolado corresponde ao estado onde, satisfeitas as restrições internas, a entropia é máxima. Duas importantes consequências disso são que o calor não pode passar naturalmente de um corpo frio a um corpo quente, e que um Moto perpétuo, ou seja, um motor que produza trabalho infinitamente, mas por calor, seja impossível.[Nota 9]

Interpretação estatística[editar | editar código-fonte]

Em 1877Ludwig Boltzmann visualizou um método probabilístico para medir a entropia de um determinado número de partículas de um gás ideal, na qual ele definiu entropia como proporcional ao logaritmo neperiano do número de microestados que um gás pode ocupar:
X


 ,    X  
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



Onde S é a entropia, k é a constante de Boltzmann e Ω é o número de microestados possíveis para o sistema.
O trabalho de Boltzmann consistiu em encontrar uma forma de obter a equação entrópica fundamental S a partir de um tratamento matemático-probabilístico [Nota 10]facilmente aplicável aos sistemas em questão. Ao fazê-lo, conectou o todo poderoso formalismo termodinâmico associado à equação fundamental a um método de tratamento probabilístico simples que exige apenas considerações físicas primárias sobre o sistema em análise, obtendo, a partir de considerações básicas, todo o comportamento termodinâmico do sistema. A equação de Boltzman mostra-se muito importante para o estudo termodinâmico de tais sistemas, e reconhecida como tal pelo próprio autor, encontra-se gravada em sua lápide.[Nota 11]

Força associada à entropia[editar | editar código-fonte]

Qual é a origem da força entrópica? A resposta mais geral é que um sistema sempre quer retornar ao seu estado de máxima entropia, isso explica porque as moléculas tendem a resistir sair do seu estado de desordem.
Em física, uma força entrópica atuando em um sistema é uma força resultante da tendência termodinâmica de todo o sistema para aumentar sua entropia. A abordagem entrópica para o movimento browniano foi inicialmente proposta por RM Neumann,[4] Neumann associou a força entrópica de uma partícula em movimento browniano tridimensional usando a equação de Boltzmann e denotou esta força como uma força motriz.

Formulação matemática[editar | editar código-fonte]

A dedução dessa fórmula parte da primeira lei da termodinâmica e da definição de trabalho, considerando dilatações pequenas podemos escrever a primeira lei na forma:
X


 ,    X  
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



No entanto, se a dilatação total objeto (dE) for pequena e a considerarmos igual à zero, obtemos a expressão para a força exercida pelo elástico:
X


 ,    X  
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS







Entalpia, por vezes referida como entalpia absoluta, é uma grandeza física definida no âmbito da termodinâmica clássica, de forma que esta meça a máxima energia de um sistema termodinâmico, teoricamente passível de ser deste removida na forma de calor. É particularmente útil na compreensão e descrição de processos isobáricos:[1] à pressão constante as variações de entalpia encontram-se diretamente associadas às energias recebidas pelo sistema na forma de calor, as quais são facilmente mensuráveis em calorímetros.
Conforme definida, a entalpia engloba em si não apenas a energia interna do sistema, mas também a energia armazenada no conjunto sistema-vizinhança que, absorvida pelo sistema via trabalho realizado pela vizinhança sobre esse em processos termodinâmicos que impliquem a diminuição de seu volume, também integra uma parcela de energia passível de ser extraída na forma de calor a partir do referido sistema. A entalpia mensura pois a totalidade de energia de alguma forma atrelada ao sistema - incluindo-se nesta não apenas a energia encerrada no sistema como também a energia atrelada ao sistema em virtude das relações que este estabelece com a sua vizinhança.
Em acordo com o apresentado, a entalpia absoluta, ou simplesmente entalpia, H, define-se por:[2][3]
X


 ,    X  
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



onde U representa a energia interna do sistema e PV mensura a quantidade de energia associada ao conjunto sistema-vizinhança devido ao fato do sistema ocupar um volume V quando submetido à pressão constante P, ou seja, o máximo trabalho executável pela vizinhança sobre o sistema.
Embora as entalpias absolutas - assim como as energias internas absolutas - não desempenhem papel de maior relevância na análise prática de processos físico-químicos - sendo em verdade experimentalmente muito complicadas suas precisas determinações - as variações de entalpia são contudo facilmente mensuráveis via aparelhos conhecidos como calorímetros e estas sim desempenham papel o mais importante na análise dos citados processos. É a variação de entalpia  em um dado processo termodinâmico - ou seja, a diferença entre as entalpias do estado final  e do estado inicial  visto ser a entalpia uma função de estado -, e não a entalpia em si, que retém real significado físico e prático: a variação de entalpia mensura o calor absorvido pelo sistema durante os processos termodinâmicos provido que estes realizem-se à pressão constante.
entalpia-padrão de um sistema corresponde à entalpia do sistema antes descrita subtraída de uma constante adequadamente escolhida de forma a ter-se a entalpia-padrão de um sistema em particular - adequadamente escolhido para constituir um padrão universal de referência - propositalmente definida como zero. A definição de entalpia-padrão faz-se por razões práticas e não acarreta implicação alguma na determinação das variações de entalpia em processos termodinâmicos, visto serem as suas variações iguais às respectivas variações de entalpia absoluta (). Assim sendo, define-se de forma universalmente aceita que toda substância simples em estado padrão - ou seja, no estado físico e alotrópico mais estável, a 298,15 K (25°C) e 1 bar (100.000 Pa), tem entalpia-padrão por definição igual a zero - mesmo não sendo nula sua entalpia absoluta em tal estado. Determinar a entalpia-padrão de um estado particular de um sistema consiste pois em determinar a variação de entalpia em um processo qualquer que tenha por estado final o estado em consideração e que tenha por estado inicial sempre o estado padronizado associado. O estado inicial padrão constitui uma referência para a medida de entalpia, e a partir desta referência determinam-se doravante com facilidade as entalpias-padrão de todos os demais compostos químicos ou estados. Em particular, dá-se o nome de entalpia de formação à entalpia-padrão de uma substância pura composta; o que corresponde, dada a aplicação da definição de entalpia padrão ao caso, à variação de entalpia associada à reação que tem por estado inicial os elementos necessários à produção do composto - este em sua forma padrão - e por estado final apenas a substância composta em consideração - nas condições específicas à situação. As entapias-padrão das substâncias compostas - as entalpias de formação - são as entalpias que encontram-se geralmente tabeladas em livros e manuais, não raro figurando junto às variações de entalpias para reações químicas específicas.
No Sistema Internacional de Unidades a unidade da entalpia é o joule (J). Ao passo que na literatura a entalpia absoluta é geralmente representada pelo símbolo H, a entalpia-padrão encontra-se geralmente representada pelo símbolo H 0.
Quando expressa em função da entropia S, número de elementos N, e da pressão P - para o caso de sistemas termodinâmicos mais simples - a entalpia  é, assim como o são as respectivas Transformadas de Legendre associadas, a saber a Energia livre de Helmholtz , a Energia livre de Gibbs  e a energia interna , uma equação fundamental para os sistemas termodinâmicos em consideração. A partir de uma equação fundamental é possível via formalismo matemático inerente à termodinâmica obter-se qualquer informação física relevante para o sistema por ela descrito. Se a entalpia encontrar-se expressa em função de outras grandezas que não as mencionadas, esta constituirá apenas uma equação de estado e não em uma equação fundamental. Uma equação de estado não encerra em si todas as informações acerca do sistema; contudo a partir de todas as equações de estado do sistema é possível deduzir-se uma equação fundamental, e em consequência, via transformadas de Legendre, todas as demais .[4]

    Definição[editar | editar código-fonte]

    Quando um sistema imerso em um ambiente à pressão constante sofre um processo qualquer, indo de um estado inicial "i" para um estado final "f", a quantidade de energia trocada com a vizinhança na forma de trabalho é definida apenas pela variação de volume  sofrida pelo sistema e pela pressão P do ambiente constate durante todo o processo. Assume-se aqui, sem perda de generalidade, que tem-se uma transformação quase-estática, de forma que a pressão P é também a pressão do sistema em si. A citada quantidade de trabalho W realizada pelo sistema sobre a vizinhança sob pressão constante é determinável através da expressão:
    X


     ,    X  
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



    É de interesse mensurar neste tipo de transformação a quantidade de calor trocada entre o sistema e sua vizinhança. Ao ceder-se certa quantidade de calor ao sistema, este expande-se, realizando um trabalho W sobre a vizinhança. A energia entregue à vizinhança - e que por tal abandona o sistema - é transferida às custas de parte do calor que entra no sistema, de forma que apenas parte do calor transferido ao sistema implica real aumento na energia interna deste sistema. A lei da conservação da energia fornece:
    X


     ,    X  
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



    Como a energia interna e o volume do sistema são funções de estado, segue-se que nestes processos a quantidade de calor trocada também é uma função de estado. A expressão acima permite a definição de uma grandeza física conhecida por entalpia H de forma que:
    X


     ,    X  
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



    Decorre que a entalpia pode ser definida pela função de estado introduzida por Josiah Willard Gibbs:
    Definição de Entalpia
    X


     ,    X  
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



    onde U é a energia interna do sistema e PV é o produto da pressão pelo volume do sistema (e da vizinhança), ou seja, a energia armazenada no conjunto sistema vizinhança.
    Conforme definida, a variação da entalpia implica pois a expressão antes apresentada para a conservação da energia:
    X


     ,    X  
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



    A entalpia, por ser - assim como a energia interna e o trabalho - uma grandeza associada à medida de energia, é por tal também medida em joules.
    É aqui importante ressaltar-se que a variação da entalpia em um dado processo corresponde sempre à entalpia do estado final menos a entalpia do estado inicial atrelados ao referido processo, e que em equações químicas esta corresponde pois a entalpia do estado onde tem-se os produtos menos a entalpia do estado onde tem-se os reagentes ().
    Partindo-se do fato que a expressão da energia interna  é uma equação fundamental para o sistema e assim o sendo encerra em si todas as informações acerca do comportamento deste, é de se esperar que seja possível, partindo-se desta expressão, inferir o comportamento do correspondente sistema à pressão constante, e por tal derivar-se da primeira a expressão para . Em acordo com o estabelecido pela Transformada de Legendre aplicada à energia interna , a fim de constituir também uma equação fundamental, a entalpia  deve figurar em função, entre outras se houver, das grandezas extensivas entropia S, quantidade de matéria N, e da grandeza intensiva pressão P, devendo a correspondente grandeza extensiva conjugada à pressão - o volume V - ser substituída em  mediante a relação[5] :
     .
    X


     ,    X  
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



    Caso a entalpia figure em função de demais grandezas que não as citadas, a exemplo em função da temperatura T ou mesmo do volume V, tal expressão não constituirá uma equação fundamental para o sistema, caracterizando-se então apenas como uma equação de estado.
    A tabela que se segue apresenta os passos a serem seguidos a fim de se obter a entalpia  a partir da energia interna , e vice versa mantidas as condições para que ambas figurem como equações fundamentais.
    Transformadas de Legendre na Termodinâmica - Entalpia, partindo-se de :
    Determinar  e 
    Eliminação de U e V fornece:
    Entalpia H
    Transformadas de Legendre em Termodinâmica - Entalpia H - Para chegar-se a :
    Determinar  e 
    Eliminação de P e H fornece:
    Energia Interna U

    • X


    •  ,    X  
      X

      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS

      Exemplo

    A equação fundamental para a Entalpia de um gás monoatômico ideal é, com  sendo uma constante com dimensão adequado ao ajuste correto da análise dimensional :
     [6]
    X


     ,    X  
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



    Esta equação pode ser obtida a partir da equação fundamental para a energia interna  seguindo-se os passos na parte superior da tabela apresentada, ou a partir dela pode-se obter a energia interna seguindo-se os passos na parte inferior da tabela em questão. Os cálculos associados são apresentados no artigo relacionado à Transformada de Legendre na presente enciclopédia. A título ilustrativo a energia interna para o sistema em questão expressa-se como:
    X


     ,    X  
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



    A equação anterior pode facilmente ser reescrita a fim de tornar-se similar à encontrada em outros artigos da wikipédia. Uma vez suprimindas constante(s) com unidade(s) definida(s) de forma a tornarem correta a análise dimensional ,[7] esta apresentar-se-á como abaixo:
     [8]
    X


     ,    X  
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS







    Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
    Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
    Mais detalhes em: Energia do fóton
    Algebricamente:
    Onde:
    • h é a constante de Planck,
    • f é a frequência do foton incidente,
    •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
    •  é a energia cinética máxima dos elétrons expelidos,
    • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
    • m é a massa de repouso do elétron expelido, e
    • vm é a velocidade dos elétrons expelidos.
    Notas:
    Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
    Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
    Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.



    Uma analogia comumente utilizada para explicar tal fenômeno envolve uma colina e um trenó subindo em direção ao cume da colina. Imaginando que o trenó esteja subindo a colina, parte de sua energia cinética que se transforma em energia potencial gravitacional U. Quando o cume da colina é atingido, podemos pensar que o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar do outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para direita com energia E como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplória o efeito Túnel.[6]
    Reflexão e tunelamento através de uma barreira potencial por um pacote de ondas. Uma parte do pacote de ondas passa através da barreira, o que não é possível pela física clássica.
    Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, podemos pensar em três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as 3 regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda - a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[2]
    O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.
     , 
    Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia de Ub-E entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[6]




     ,    X  
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS